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Abstract
Stokes parameters form a Minkowskian 4-vector under various optical
transformations. As a consequence, the resulting two-by-two density matrix
constitutes a representation of the Lorentz group. The associated Poincaré
sphere is a geometric representation of the Lorentz group. Since the Lorentz
group preserves the determinant of the density matrix, it cannot accommodate
the decoherence process through the decaying off-diagonal elements of the
density matrix, which yields to an increase in the value of the determinant. It
is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The
change in the determinant in one Lorentz group can be compensated by the
other. It is thus possible to describe the decoherence process as a symmetry
transformation in the O(3, 2) space. It is shown also that these two coupled
Lorentz groups can serve as a concrete example of Feynman’s rest of the
universe.

PACS numbers: 42.25.Kb, 42.25.Ja, 11.30.Cp, 03.65.Yz

1. Introduction

Traditionally the Poincaré sphere plays a central role in polarization optics [1]. It is also
found to be useful to elucidate the properties of geometric phases [2], two-beam systems with
partially coherent phase relations [3], symmetric scattering [4] and the decoherence in multiple
scattering of light [5] as well as the decoherence in Bose Einstein condensates [6]. Apart from
those, Thomas rotations are investigated in connection with the Bloch ball which is regarded
as the Poincaré sphere model of the hyperbolic geometry [7].

Since the sphere is applicable to diverse branches of physics, and since its geometry
is so appealing, the symmetry of the Poincaré sphere is a subject by its own right. It has
three-dimensional rotational symmetries which are well known. What other symmetries does
this sphere possess? This is one of the questions we would like to address in this paper.
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Polarization optics can be formulated in terms of the two-by-two and four-by-four
representations of the six-parameter Lorentz group. It was noted that the two-component
Jones vector and the 4-component Stokes parameters are like the relativistic spinors and the
Minkowskian 4-vectors, respectively [8, 9]. It is possible to identify the attenuator, rotator and
phase shifter with appropriate transformation matrices of the Lorentz group. This formulation
is not restricted to polarization optics. It can be applied to all two-beam systems with coherent
or partially coherent phases.

If we use (t, z, x, y) as the Minkowskian 4-vector to which four-by-four Lorentz-
transformation matrices are applicable, it is possible to write

X =
(

t + z x − iy
x + iy t − z

)
, (1)

with appropriate two-by-two transformation matrices applicable to both sides of this two-
by-two representation of the 4-vector. These Lorentz transformations are unimodular
transformations, keeping the determinant t2 − z2 − x2 − y2 of the above matrix invariant.

If we write the Stokes parameters in this two-by-two form, the matrix becomes the density
matrix. This density matrix can also be geometrically represented by the Poincaré sphere.
Therefore, the symmetry of the Poincaré sphere is necessarily that of the Lorentz group [10].
In this Lorentzian regime, the determinant of the density matrix is an invariant quantity.

Unlike the Jones vectors, the Stokes parameters, the density matrix and the Poincaré sphere
can deal with the lack of coherence between the two beams. The determinant of the density
matrix vanishes when the two beams are completely coherent, and it increases as the beams lose
coherence. The Lorentzian symmetry of the Poincaré sphere can describe the symmetry with
a fixed value of the determinant, but it cannot describe the process in which the determinant
changes its value. In other words, we cannot discuss the decoherence process within the
framework of the Lorentz group [10].

Although there are other types of decoherences such as decoherence due to amplitude
damping, in this paper we restrict our study to phase decoherence, since we are tempted
to associate this damping problem with dissipation problems in physics [11]. The known
mathematical method closest to group theoretical approaches is to introduce the concept semi-
groups [12]. While semi-groups are quite promising in traditional dissipation problems, we
choose to investigate the decoherence problem with a mathematical method which is already
familiar to us.

Let us start with a pair of complex numbers a and b. From these numbers, we can construct
the density matrix of the form

ρ =
(

aa∗ ab∗ e−λt

a∗b e−λt bb∗

)
. (2)

Indeed, the decay in the off-diagonal elements of this matrix plays fundamental role in
decoherence processes [13, 14].

The determinant of this matrix is

aa∗bb∗(1 − e−2λt ). (3)

This density matrix enjoys the symmetry properties such as those of the X matrix given
in equation (1), since the optical transformations applicable to the Stokes parameters are
like Lorentz transformations. However, these determinant-preserving transformations cannot
change the t variable.

When t = 0, the system is in a pure state, and the determinant is zero. As t increases, the
value of the determinant in equation (3) increases from zero to aa∗bb∗, and consequently the
system becomes decoherent.
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The question is whether there is a symmetry group which will accommodate this transition
process. We know the Lorentz group cannot, but this does not prevent us from looking for a
larger symmetry group. The purpose of the present paper is to show that the de Sitter group
O(3, 2) accommodates this decoherence process.

In section 2, we introduce the O(3, 2) de Sitter group and point out that it can act as
two coupled O(3, 1) Lorentz groups. In section 3, we review the symmetries of the Stokes
parameters and the density matrix. In section 4, we study the symmetries of the Poincaré
sphere within the Lorentzian framework and discuss in detail what is possible and what is not
possible. In section 5, it is shown that the O(3, 2) symmetry can provide a framework for the
decoherence process. In section 6, we interpret the result of our paper in terms of Feynman’s
rest of the universe.

2. The O(3, 2) de Sitter group as two coupled Lorentz groups

The de Sitter group is an extension of the Lorentz group applicable to a five-dimensional space
consisting of three space coordinates (x, y, z) and two time coordinates (t, u). It leaves the
quadratic form

t2 + u2 − x2 − y2 − z2 (4)

invariant. This five-dimensional space admits three rotations around the three coordinate axes
and for each of the two time coordinates there are two sets of boost transformations along the
three coordinate axes. There is also one more rotation acting on the two time coordinates, all
adding up to ten transformations. Thus, this ten-parameter group is the minimal extension of
the O(3, 1) Lorentz group which is locally isomorphic to Sp(4, R) [15].

Spacetime structures with additional space or time variable(s) have been studied [16, 17],
and its representations have been discussed in detail [18].

The generators Mab, with Mab = −Mba satisfy the commutation relations:

[Mab,Mcd ] = i(gadMbc − gacMbd + gbcMad − gbdMac), (5)

where gab = diag(−1,−1, 1, 1, 1). From Mab, the rotation generators Ji and the boost
generators Lij can respectively be read as:

Ji = 1
2εijkM

jk, Lij = Mij+2 (6)

where the late indices i, j, . . . , run from 1 to 3. They satisfy the commutation relations:

[Ji, Jj ] = iεijkJk, [Ji, Ljk] = iεij lLlk [Lij , Lkl] = −iδjlεikmJm. (7)

Although, this may sound like a mathematical exercise remote from the physical reality,
we would like to emphasize that the O(3, 2) de Sitter group is already a standard theoretical
tool in optical sciences, specifically as a mathematical basis for two-mode squeezed states
[19, 20], as well as in the theory of elementary particles together with the O(4, 1) group. As
Paul A M Dirac noted in 1963, the O(3, 2) group is the fundamental symmetry group for two
coupled harmonic oscillators [15]. This two-oscillator system often serves as a mathematical
basis for soluble models such as the Lie model in quantum field theory [21] and the Bogoliubov
transformations in superconductivity [22].

However, in this paper, we are interested in the fact that the O(3, 2) group contains two
O(3, 1) Lorentz groups, where the two time variables are linearly combined through the one-
parameter rotation group. We will consider them as two coupled Minkowskian spaces. Let
us consider two Minkowskian 4-vectors (t, x, y, z) and (u, x, y, z). In the first Minkowskian
space,

(t2 − x2 − y2 − z2) (8)
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is invariant under Lorentz transformations while

(u2 − x2 − y2 − z2) (9)

is invariant in the other Minkowskian space.
Let us introduce two notations T and U defined as

T =
√

t2 − x2 − y2 − z2, U =
√

u2 − x2 − y2 − z2. (10)

These two positive quantities are Lorentz-invariants in their respective Minkowskian spaces.
However, they do not have to remain invariant in the five-dimensional de Sitter space. If we
write the 5-vector as

(t, x, y, z, u), (11)

it is possible to have a Lorentz frame in which x = y = z = 0. Then the above 5-vector
becomes

(T , 0, 0, 0, U). (12)

In this particular frame, the O(3, 2) group contains rotations which will allow us to write(
T

U

)
=

(
cos χ −sin χ

sin χ cos χ

) (
Z

0

)
, (13)

where

Z2 = T 2 + U 2. (14)

The variables T and U are invariant in their respective four-dimensional Minkowskian space;
however the quantity invariant in the de Sitter space is Z. Indeed, we can say that these two
Minkowskian spaces are coupled by equation (13) within the five-dimensional de Sitter space.

It has been shown in the literature that the Stokes parameters behave like Mikowskian
4-vectors [10]. Furthermore, they represent the density matrix for two optical beams. We
therefore note that the quantities T and U correspond to the determinants of those density
matrices measuring coherence of each system. Therefore, equation (14) tells a conservation
of coherence in the total system defined in the de Sitter space.

The loss of coherence in one Lorentzian space will yield to a gain in the other space. We
shall show that our symmetry model will constitute a concrete example of Feynman’s rest of
the universe. The first Lorentzian space is the world in which we make physical observations,
and the second space belongs to the rest of the universe [23, 24].

It has been a question for many years whether time-irreversible systems such as dissipative
and decoherent systems can be formulated as symmetry problems by introducing the rest of
the universe clearly defined by Feynman. We shall see in the following sections whether this
is possible for two-beam optical systems.

As for the values of T and U, we assume here that they are positive and can become as
small as we wish, but do not vanish completely. This is a perfectly valid procedure in dealing
with vanishing numbers in physics. However, there is a big difference in mathematics. It
required a procedure called ‘group contractions’ [25]. We shall avoid in this section group
contractions.

3. Stokes parameters as Minkowskian 4-vectors

Let us start with a plane wave propagating along the z direction. Then, it has polarizations
along the x and y directions. We can then write the Jones vector as(

ψ1

ψ2

)
=

(
A exp{i(kz − ωt)}
B exp{i(kz − ωt)}

)
. (15)
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Even though the Jones vector was developed originally for polarized light waves, the formalism
can be extended to all two-beam systems such as interferometers [10].

If the two beams are mixed, we use the rotation matrix

R(θ) =
(

cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

)
, (16)

applicable to column vector of equation (15).
These two beams can go through two different optical path lengths, resulting in a phase

difference. If the phase difference is φ, the phase shift matrix is

P(φ) =
(

e−iφ/2 0
0 eiφ/2

)
. (17)

When reflected from mirrors, or while going through beam splitters, there are intensity
losses for both beams. The rate of loss is not the same for the beams. This results in the
attenuation matrix of the form(

e−η1 0
0 e−η2

)
= e−(η1+η2)/2

(
eη/2 0

0 e−η/2

)
(18)

with η = η2 − η1 . This attenuator matrix tells us that the electric fields are attenuated at two
different rates. The exponential factor e−(η1+η2)/2 reduces both components at the same rate
and does not affect the degree of polarization. The effect of polarization is solely determined
by the squeeze matrix

S(η) =
(

eη/2 0
0 e−η/2

)
. (19)

It was shown in [8, 10, 26] that repeated applications of the rotation matrices of the form
of equation (16), shift matrices of the form of equation (17) and squeeze matrices of the form
of equation (19) lead to a two-by-two representation of the six-parameter Lorentz group. The
transformation matrix in general takes the form

G =
(

α β

γ δ

)
, (20)

applicable to the column vector of equation (15), where all four elements are complex numbers
with the condition that the determinant of the matrix be one. This matrix contains six free
parameters. The above G matrix constitutes the two-by-two representation of the six-parameter
Lorentz group, commonly called SL(2, c).

Indeed, the two-component Jones vector provides the representation space for the two-by-
two representation of the Lorentz group. However, the Jones vectors cannot describe whether
the two beams are coherent. This is the reason why we have to resort to the coherency matrix

C =
(

S11 S12

S21 S22

)
, (21)

with
S11 = 〈ψ∗

1 ψ1〉, S22 = 〈ψ∗
2 ψ2〉,

S12 = 〈ψ∗
1 ψ2〉, S21 = 〈ψ∗

2 ψ1〉.
(22)

This coherency matrix also serves as the density matrix [23].
Under the influence of the G transformation given in equation (20), this density matrix is

transformed as

C ′ = GCG† =
(

S ′
11 S ′

12

S ′
21 S ′

22

)

=
(

α β

γ δ

)(
S11 S12

S21 S22

) (
α∗ γ ∗

β∗ δ∗

)
. (23)
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This leads to the four-by-four transformation


S ′
11

S ′
22

S ′
12

S ′
21


 =




α∗α γ ∗β γ ∗α α∗β
β∗γ δ∗δ δ∗γ β∗δ
β∗α δ∗α β∗β δ∗β
α∗γ γ ∗γ α∗δ γ ∗δ







S11

S22

S12

S21


 . (24)

It is sometimes more convenient to use the following combinations of parameters:

S0 = S11 + S22√
2

, S1 = S11 − S22√
2

,

S2 = S12 + S21√
2

, S3 = S12 − S21√
2i

.

(25)

These four parameters are called the Stokes parameters in the literature [27], usually in
connection with polarized light waves. However, as was mentioned before, the Stokes
parameters are useful to all two-beam systems. We can write the above expression as


S0

S1

S2

S3


 = 1√

2




(S11 + S22)

(S11 − S22)

(S12 + S21)

i(S21 − S12)


 . (26)

Then the four-by-four matrix which transforms (S11, S22, S12, S21) to (S0, S1, S2, S3) is


S0

S1

S2

S3


 = 1√

2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −i i







S11

S22

S12

S21


 . (27)

This matrix enables us to construct the transformation matrix applicable to the Stokes
parameters, widely known as the Mueller matrix. The transformation matrix applicable
to the Stokes parameters of equation (25) can be derived from equation (24), and its form has
been discussed in detail in [10, 8]. The above Stokes parameters form a Minkowskian 4-vector
like (t, z, x, y), and the transformation matrix applicable to the Stokes parameters represents
a Lorentz transformation.

The four-by-four representation is like the Lorentz transformation matrix applicable to the
spacetime Minkowskian vector (t, z, x, y) [10]. This allows us to study spacetime symmetries
in terms of the Stokes parameters which are applicable to interferometers. Let us first see how
the rotation matrix of equation (16) is translated into the four-by-four formalism. In this case,

α = δ = cos(θ/2), γ = −β = sin(θ/2). (28)

Thus, the corresponding four-by-four matrix takes the form

R(θ) =




1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1


 . (29)

Let us next see how the phase-shift matrix of equation (17) is translated into this four-
dimensional space. For this two-by-two matrix,

α = e−iφ/2, β = γ = 0, δ = eiφ/2. (30)
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For these values, the four-by-four transformation matrix takes the form

P(φ) =




1 0 0 0
0 1 0 0
0 0 cos φ −sin φ

0 0 sin φ cos φ


 . (31)

For the squeeze matrix of equation (19),

α = eη/2, β = γ = 0, δ = e−η/2. (32)

As a consequence, its four-by-four equivalent is

S(η) =




cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1


 . (33)

If the above matrices are applied to the four-dimensional Minkowskian space of (t, z, x, y),
the above squeeze matrix will perform a Lorentz boost along the z or S1 axis with S0 as the
time variable. The rotation matrix of equation (29) will perform a rotation around the y or
S3 axis, while the phase shifter of equation (31) performs a rotation around the z or the S1

axis. Matrix multiplications with R(θ) and P(φ) lead to the three-parameter group of rotation
matrices applicable to the three-dimensional space of (S1, S2, S3).

The phase shifter P(φ) of equation (31) commutes with the squeeze matrix of
equation (33), but the rotation matrix R(θ) does not. This aspect of matrix algebra leads
to many interesting mathematical identities which can be tested in laboratories. One of the
interesting cases is that we can produce a rotation by performing three squeezes. This aspect
is widely known as the Wigner rotation as discussed in the literature.

In this paper, we are interested in studying the time-dependent density matrix of the form

C(t) =
(

S11 S12 e−λt

S21 e−λt S22

)
. (34)

This matrix can be translated into the Minkowskian 4-vector


S0

S1

S2 e−λt

S3 e−λt


 . (35)

As t increases, the third and fourth components of this Minkowskian 4-vector become smaller.
Lorentz transformations preserve the (length)2 of the 4-vector which in the Minkowskian

metric takes the form

S2
0 − S2

1 − (
S2

2 + S2
3

)
e−2λt . (36)

This is also the determinant of the density matrix D(t). If this quantity increases as the time t
increases, we cannot handle the problem within the framework of the Lorentz group [10].

One option is to assert that this is not a reversible problem and invent a mathematical tool
other than group theory [12]. Another approach is to look for a larger group which contains the
Lorentz group as a subgroup. This is precisely what we intend to do in this paper. In section 5,
we shall introduce the O(3, 2) de Sitter group which contains two Lorentz groups. Before
getting into the world of the O(3, 2) symmetry, let us study the geometry of the Poincaré
sphere in the following section.
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4. Lorentz symmetries of the Poincaré sphere

The Poincaré sphere has a long history, and its spherical symmetry is well known [1]. The
Lorentz group has the three-dimensional rotation group as its subgroup. Thus, the Lorentz
symmetry of the Poincaré sphere includes the traditional rotational symmetry. Let us study in
this section the symmetries associated with Lorentz boosts.

If we use the expressions of ψ1 and ψ2 given in equation (15), the density matrix C of
equation (21) becomes

D(t) =
(

A2 AB e(−λt−iφ)

AB e(−λt+iφ) B2

)
. (37)

Here φ is the phase difference between ψ∗
1 ψ2 and ψ1ψ

∗
2 . The λt factor in the exponent

describes the loss of coherence. We assume that the off-diagonal terms decrease exponentially
in the time variable. The determinant of this density matrix is

(AB)2(1 − e−2λt ). (38)

This determinant is zero when t = 0, but increases to (AB)2 as t becomes larger.
The corresponding 4-vector is

1

2




A2 + B2

A2 − B2

2AB(cos φ) e−λt

2AB(sin φ) e−λt


 . (39)

For a fixed value of t, the geometry of the Poincaré sphere is the geometry defined by the three
parameters A,B and φ. This sphere consists of two spheres: one is the outer sphere whose
radius is the time-like component of the above 4-vector

s = (A2 + B2)

2
, (40)

and the other is the inner sphere whose radius is the magnitude of the three-vector contained
in the 4-vector of equation (39)

r = 1
2

√
(A2 − B2)2 + 4(AB)2 e−2λt . (41)

Then the quantity

s2 − r2 (42)

is Lorentz-invariant, and is equal to the value of the determinant given in equation (38). The
inner radius is equal to the outer radius when t = 0, and becomes (A2 − B2)/2 as t becomes
very large.

We can now introduce a spherical coordinate system with

rz = (A2 − B2)/2 = r(cos θ),

rx = AB(cos φ) e−λt = r(sin θ) cos φ,

ry = AB(sin φ) e−λt = r(sin θ) sin φ.

(43)

Then the Lorentz symmetry allows rotations in this three-dimensional system. Now, with the
appropriate rotation it is possible to bring 4-vector of equation (39) to


s

r

0
0


 . (44)
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The rotations do not change the radii of the outer and inner spheres, and r and s remain
invariant under the rotations.

However, the Lorentz symmetry allows the Lorentz boosts of the 4-vector of equation (44)
along the −z direction. If we apply the inverse of the boost matrix of equation (33), then the
4-vector becomes


s(cosh η) − r(sinh η)

r(cosh η) − s(sinh η)

0
0


 . (45)

This transformation changes the outer and inner radii, but keeps (s2 − r2) invariant, as we can
see from

[s(cosh η) − r(sinh η)]2 − [r(cosh η) − s(sinh η)]2 = s2 − r2. (46)

It is now possible to choose the value of η such that

r(cosh η) − s(sinh η) = 0, (47)

which leads to tanh η = r/s. If this condition is met, then the 4-vector of equation (45)
becomes 


√

s2 − r2

0
0
0


 =




AB
√

1 − e−2λt

0
0
0


 . (48)

Indeed, the Lorentz symmetry allows us to bring the Poincaré sphere to a one-number system.
We are now tempted to change the value of (r2 − s2) in the above expression by changing
the time variable t. This is precisely what is not allowed within the framework of the Lorentz
group. We shall see whether this can be achieved when symmetry group is enlarged.

5. O(3, 2) symmetry of the Poincaré sphere

In order to deal with the above problem, we introduce the O(3, 2) de Sitter space. As we
emphasized in section 1, this group has already been exploited in optical sciences.

Let us consider a 5-vector (0, 0, 0, 0,m) in the de Sitter space, and a five-by-five rotation
matrix acting on the two time coordinates


cos χ 0 0 0 sin χ

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−sin χ 0 0 0 cos χ


 . (49)

This rotation matrix changes the 5-vector to

(m(sin χ), 0, 0, 0,m(cos χ)). (50)

We have noted in section 2 that the de Sitter space contains two Minkowskian subspaces,
with their respective invariants of equations (8) and (9), while the invariant quantity in this
larger space is given in equation (4). If z = x = y = 0, we let this invariant quantity to be
(t2 + u2) = m2. Thus, in the Minkowskian space with the coordinate system (t, z, x, y), the
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invariant quantity is m2 sin2 χ , while m2 cos2 χ is the invariant quantity in the Minkowskian
space with the coordinate system (u, z, x, y), where now the four vectors in these spaces are


m(sin χ)

0
0
0


 ,




m(cos χ)

0
0
0


 (51)

respectively.
Let us compare the first 4-vector of equation (51) with the 4-vector of equation (48). If

we identify the parameter m(sin χ) in equation (51) with
√

s2 − r2 of equation (48), we have

s2 − r2 = m2 sin2 χ. (52)

This further allows us to identify m as AB in equation (48), and

(AB)2(sin χ)2 = (AB)2(1 − e−2λt ), (53)

which leads to

cos χ = e−λt . (54)

We concluded in section 4 that the t parameter cannot be changed in the Lorentzian
regime. However, we have shown that this decoherence parameter can be identified with the
angle variable χ in the de Sitter space.

After changing the t variable, we can make inverse transformations to return to the 4-
vector of the form given in equation (39). Indeed, it is gratifying to note that we now have the
freedom of changing this time variable with a symmetry operation. In terms of this symmetry
parameter, we can write the density matrix as

ρ(χ) =
(

A2 AB e−iφ(cos χ)

AB eiφ(cos χ) B2

)
. (55)

If χ = 0 and t = 0, the system is in a pure state. As t becomes large, the angle χ approaches
90◦. Therefore the de Sitter parameter χ neatly takes care of the loss of coherence in the
two-beam system.

6. Physical interpretation

In this paper, we introduced two separate Minkowskian spaces by insinuating the de Sitter space
and consequently we have converted the decoherence problem into a symmetry problem. The
first Minkowskian space was defined by the coordinate variables (t, z, x, y), and the second
one by (u, z, x, y). When we discussed the Lorentzian symmetry of the Poincaré sphere
we worked with the first Minkowskian space. Our analysis for the second Minkowskian
space would be exactly the same, except that sin χ is replaced by cos χ as can be seen from
equation (49). The density matrix in this second space can then be written as

σ(χ) =
(

A2 AB e−iφ(sin χ)

AB eiφ(sin χ) B2

)
. (56)

This density matrix gains coherence as the density matrix of equation (55) loses coherence. The
determinants of these two density matrices are (AB)2 sin2 χ and (AB)2 cos2 χ respectively.
The sum of these two determinants is (AB)2 and is independent of the angle variable χ. Indeed,
these two density matrices or the two Lorentzian subspaces are ‘coupled’ in a Pythagorean
manner.
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Next, in order to discuss the density matrix, let us go back to equation (55) and write the
amplitudes A and B as

A =
√

2r cos(θ/2), B =
√

2r sin(θ/2). (57)

Then the density matrix takes the form

ρ(χ) = 2r

(
cos2(θ/2) [sin(θ/2) cos θ/2)] e−iφ cos χ

[sin(θ/2) cos θ/2)] e+iφ cos χ sin2(θ/2)

)
. (58)

Since the density matrix is invariant within a given Poincaré regime, we can evaluate the above
matrix for a convenient value of θ . So we choose θ = 90◦. If we impose the normalization
condition Tr(ρ) = 1, the density matrix ρ(χ) of equation (55) becomes

ρ(χ) = 1

2

(
1 e−iφ cos χ

eiφ cos χ 1

)
. (59)

This matrix can be diagonalized into the form

1

2

(
1 + cos χ 0

0 1 − cos χ

)
. (60)

Then the entropy can be calculated from the formula

S = −Tr(ρ ln ρ), (61)

and the result is

S = −
(

1 − cos χ

2

)
ln

(
1 − cos χ

2

)
−

(
1 + cos χ

2

)
ln

(
1 + cos χ

2

)
. (62)

This quantity becomes 0 when χ = 0 (fully coherent) and ln 2 when χ = 90◦ (fully incoherent).
This is consistent with the prevailing definition of entropy for two optical waves.

The entropy for the second space is

S ′ = −
(

1 − sin χ

2

)
ln

(
1 − sin χ

2

)
−

(
1 + sin χ

2

)
ln

(
1 + sin χ

2

)
. (63)

The entropy S of the first space is monotonically increasing function of χ, while that of the
second space S ′ is a decreasing function. Thus, an increase in entropy in the first space
leads to a decrease in the second space. Then we can ask whether the sum of these two
entropies becomes independent of χ, leading to an entropy conservation of the total system.
The answer is No. However, this does not cause problems for us, because the second space is
not necessarily a physical space. It could be meaningless to use the same definition of entropy
for this space.

Even if we insist that the second space be a physical space, the increase of entropy is
not a strange concept to us. On the other hand, we insist on a conservation of some physical
quantity, we can use the sum of the determinants of the density matrices given in equations (55)
and (56).

What is the meaning of this second space? In his book on statistical mechanics [23],
Feynman makes the following statement about the density matrix. When we solve a quantum-
mechanical problem, what we really do is divide the universe into two parts—the system in
which we are interested and the rest of the universe. We then usually act as if the system in
which we are interested comprised the entire universe. To motivate the use of density matrices,
let us see what happens when we include the part of the universe outside the system.

Feynman did not specify whether the rest of the universe is observable or not. In either
case, it is an interesting exercise to construct a model of the rest of the universe behaving like
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a physical world. With this point in mind, Han et al studied two coupled harmonic oscillators
in which one of the oscillators corresponds to the physical world and the other to the rest of
the universe [24]. In this example, the rest of the universe is the same as the world in which
we do physics. In thermal field theory [28], even though based on the same mathematics as
that of the coupled oscillators, the rest of the universe is not physically identified, except that
it causes thermal excitations of the oscillators in the physical world.

In the case of decoherence, the concept of thermal bath as the cause of decoherence was
noted by Feynman and Vernon [29]. The decoherence effect in tunnelling processes was
studied by Caldeira and Leggett in 1983 [30]. In their review paper, Leggett et al discuss
two-state systems coupled to a dissipative system [31]. The two-level decoherence within
the field-theoretic framework was studied in detail by Anastopoulos and Hu [32]. Recently,
Shiokawa and Hu were able to apply this two-level decoherence to qubit systems [33].

While the concept of decoherence occupies one of the central places in the current
development of physics, the decoherence effect in two-optical beams comes from the phase-
randomizing process discussed by McAlister and Raymer [34], precisely in the form of the
two-by-two matrix discussed in this paper. As for the decoherence in the rest of the universe
introduced in this paper, the system becomes more coherent as the time variable increases.
Although this ‘recoherence’ process was considered by Anglin and Zurek [35], it is premature
to expect a two-state system to gain coherence in the real world. It is thus very safe to say
that the second Minkowskian space introduced in this paper remains in Feynman’s rest of the
universe.

However, this does not prevent us from constructing a physical system analogous to the
decoherent system coupled to a recoherent system. It was noted by the present authors that
para-axial lens systems constitute a very rich resource of symmetries of the Lorentz group [36].
Thus, it may be possible to construct a system of lenses which will illustrate the combination
of decoherence and recoherence processes discussed in the present paper.

7. Concluding remarks

It has been widely believed that the decoherence problem could not be treated as a symmetry
problem. In this paper, we have presented a different view, using an extra time-like dimension
in the Lorentz group. The de Sitter group we used has been one of the standard tools in
relativistic quantum mechanics [17] and elementary particle physics including one of the most
recent models in string theory. Also, this group is not new in optical sciences. In 1963, Paul
A M Dirac observed that the de Sitter group O(3, 2) serves as a symmetry group for coupled
harmonic oscillators [15]. This group is the fundamental scientific language for two-mode
squeezed states of light [19, 20]. We are thus not carrying the burden of introducing a new
mathematical device in this paper.

As we noted in section 6, the O(3, 2) group can serve as an illustrative example of
Feynman’s rest of the universe [23]. One Lorentz subgroup represents the system under
examination, while the other appears as the rest of the universe. As Feynman noted, it is more
satisfying to understand the entire system including the rest of the universe.

By mentioning his rest of the universe, Feynman introduced the concept of two entangled
worlds. In view of the current trend in physics, it is worth studying physical examples
of Feynman’s rest of the universe in connection with entangled systems. For instance, the
universe consisting of two coupled oscillators serves an illustrative example [24]. In this
context, we also note that Feshbach and Tikochinsky studied a dissipative oscillator using two
coupled oscillators [37]. It would be interesting to observe further symmetries associated with
dissipative systems.
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